Combining Laser Frequency Combs and Iodine Cell Calibration Techniques for Doppler Detection of Exoplanets

نویسندگان

  • K. Cahoy
  • D. Fischer
  • J. Spronck
  • D. DeMille
چکیده

Exoplanets can be detected from a time series of stellar spectra by looking for small, periodic shifts in the absorption features that are consistent with Doppler shifts caused by the presence of an exoplanet, or multiple exoplanets, in the system. While hundreds of large exoplanets have already been discovered with the Doppler technique (also called radial velocity), our goal is to improve the measurement precision so that many Earth-like planets can be detected. The smaller mass and longer period of true Earth analogues require the ability to detect a reflex velocity of ~10 cm/s over long time periods. Currently, typical astronomical spectrographs calibrate using either Iodine absorptive cells or Thorium Argon lamps and achieve ~10 m/s precision, with the most stable spectrographs pushing down to ~2 m/s. High velocity precision is currently achieved at HARPS by controlling the thermal and pressure environment of the spectrograph. These environmental controls increase the cost of the spectrograph, and it is not feasible to simply retrofit existing spectrometers. We propose a fiber-fed high precision spectrograph design that combines the existing ~5000—6000 A Iodine calibration system with a high-precision Laser Frequency Comb (LFC) system from ~6000—7000 A that just meets the redward side of the Iodine lines. The scientific motivation for such a system includes: a 1000 A span in the red is currently achievable with LFC systems, combining the two calibration methods increases the wavelength range by a factor of two, and moving redward decreases the “noise” from starspots. The proposed LFC system design employs a fiber laser, tunable serial Fabry-Perot cavity filters to match the resolution of the LFC system to that of standard astronomical spectrographs, and terminal ultrasonic vibration of the multimode fiber for a stable point spread function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb.

We deployed two wavelength calibrators based on laser frequency combs ("astro-combs") at an astronomical telescope. One astro-comb operated over a 100 nm band in the deep red (∼ 800 nm) and a second operated over a 20 nm band in the blue (∼ 400 nm). We used these red and blue astro-combs to calibrate a high-resolution astrophysical spectrograph integrated with a 1.5 m telescope, and demonstrate...

متن کامل

High-precision wavelength calibration with laser frequency combs

We describe a possible new technique for precise wavelength calibration of high-resolution astronomical spectrographs using femtosecond-pulsed mode-locked lasers controlled by stable oscillators such as atomic clocks. Such ‘frequency combs’ provide a series of narrow modes which are uniformly spaced according to the laser’s pulse repetition rate and whose absolute frequencies are known a priori...

متن کامل

Laser frequency combs for astronomical observations.

A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of approximately 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrated the first use of a lase...

متن کامل

High-precision wavelength calibration of astronomical spectrographs with laser frequency combs

We describe a possible new technique for precise wavelength calibration of high-resolution astronomical spectrographs using femtosecond-pulsed mode-locked lasers controlled by stable oscillators such as atomic clocks. Such ‘frequency combs’ provide a series of narrow modes which are uniformly spaced according to the laser’s pulse repetition rate and whose absolute frequencies are known a priori...

متن کامل

Optimization of filtering schemes for broadband astro-combs.

To realize a broadband, large-line-spacing astro-comb, suitable for wavelength calibration of astrophysical spectrographs, from a narrowband, femtosecond laser frequency comb ("source-comb"), one must integrate the source-comb with three additional components: (1) one or more filter cavities to multiply the source-comb's repetition rate and thus line spacing; (2) power amplifiers to boost the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010